In this paper, we discuss an automated approach for exploring API equivalence and a framework to synthesise semantically equivalent programs.
Our proposed code optimisation solution, called Artemis++, tries to optimise inefficient data structures or library interfaces with automatic exploration and transformation of data structures to optimise software performance.
We present a search based testing system that automatically explores the space of all possible GUI event interleavings. Search guides our system to novel crashing sequences using Levenshtein distance and minimises the resulting fault-revealing UI sequences in a post-processing hill climb.
Determining which functional components should be integrated to a large system is a challenging task, when hardware constraints, such as available memory, are taken into account. We formulate such problem as a multi-objective component selection problem, which searches for feature subsets that balance the provision of maximal functionality at minimal memory resource cost.
“This paper presents a brief outline of a higher-order mutation based framework for Genetic Improvement (GI). We argue that search-based higher-order mutation testing can be used to implement a form of genetic programming (GP) to increase the search granularity and testability of GI.”
We introduce a mutation-based approach to automatically discover and expose ‘deep’ (previously unavailable) parameters that affect a program’s runtime costs. These discovered parameters, together with existing (‘shallow’) parameters, form a search space that we tune using search-based optimisation in a bi-objective formulation that optimises both time and memory consumption.
This paper introduces a Higher Order Mutation based approach for Genetic Improvement of software, in which the code modification granularity is finer than in previous work while scalability remains. The approach applies the NSGAII algorithm to search for higher order mutants that improve the non-functional properties of a program while passing all its regression tests.
Our novel code optimisation approach applied to optimise the performance of the popular Google Guava Library. Winner of the seach based software engineering challenge award.
The thesis applies Mutation Operators to automatically modify the source code of the target software. After a prior sensitivity analysis on First Order Mutants, “deep” (previously unavailable) parameters are exposed from the most sensitive locations, followed by a bi-objective optimisation process to fine tune them together with existing (“shallow”) parameters. The objective is to improve both time and memory resources required by the computation.
We introduce ARTEMIS, a multi-objective, cloud-based search-based optimisation framework that automatically finds optimal, tuned Darwinian Data Structure, then automatically changes an application to use that DDS.